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Abstract

The paper deals with a parallel implementation of a mixed finite element method of approximation
of eigenvalues and eigenvectors of fourth order eigenvalue problems with variable/constant
coefficients. The implementation has been done in Silicon Graphics Origin 3800, a four processor Intel
Xeon Symmetric Multiprocessor and a beowulf cluster of four Intel Pentium III PCs. The generalised
eigenvalue problem obtained after discretization using the mixed finite element method is solved using the
package LANSO. The numerical results obtained are compared with existing results (if available). The
time, speedup comparisons in different environments for some examples of practical and research interest
and importance are also given.
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1. Introduction

Consider the following eigenvalue problem: find m 2 R; for which 9 non null u such that

ðPEÞ :

Lu ¼ mu in O;

ujG ¼
qu

qn

����
G
¼ 0;

2
64 (1.1)

where the plate bending operator L is defined by

ðLuÞðxÞ ¼
X2
i¼1

X2
j¼1

X2
k¼1

X2
l¼1

q2

qxkqxl

aijkl

q2u
qxiqxj

� �
ðxÞ 8x 2 O; ð1:2Þ

O being an open convex domain with boundary G:
In Ref. [1], a mixed method formulation for the general fourth-order vibration problem (1.1)

has been developed with all details of convergence considering the combined effect of numerical
integration and a boundary approximation using isoparametric mapping. This method can be
applied to the vibration analysis of clamped biharmonic/isotropic/orthotropic/anisotropic plates.
The mixed method scheme of Hellan–Hermann–Miyoshi for biharmonic eigenvalue problem [2,3]
in a convex polygonal domain can be retrieved as a particular case with a proper choice of
coefficients in the equation.
In Ref. [4], a parallel implementation of this very interesting mixed method has been discussed

for the source problem for the operator L in Eq. (1.2). To our knowledge, this is probably the first

attempt to study the parallelization of a mixed finite element method for solving general fourth-
order elliptic problems in distributed memory environments.
In the case of eigenvalue problems, the discretization using this mixed finite element method

leads to a generalized matrix eigenvalue problem. In this paper, a parallel implementation of the
method of Ref. [1] has been done. Simplified procedures for computer implementations are
developed and the parallelization has been done in SGI Origin 3800, a four processor Intel Xeon
Symmetric Processor (SMP) and a beowulf cluster1 of four Intel Pentium III PCs. Interesting
results of numerical experiments on some examples are given with the runtime, speedup
comparisons in different platforms.
2. Computer implementation procedure

Using the mixed finite element formulation and discretization as described in Refs. [1,4] we can
form the element matrices AT and BT ; and the element mass matrix MT can be written as follows

MT ¼ ½mT
qr	1pq;rp6 with mT

qr ¼ hwq
T ; w

r
Ti0;T ¼

Z
T

wq
Tw

r
T dT ; (2.1)

with fwi
Tg

6
i¼1 being the usual polynomial canonical basis functions of C

0 Lagrange finite element
associated with the nodes of a triangle T in the triangulation th (see Refs. [1,4] for details).
1Installed in Department of Mathematics, IIT Bombay. Funding provided by Department of Science and

Technology, Ministry of Defence and Technology, Government of India.



ARTICLE IN PRESS

K. Kulshreshtha, N. Nataraj / Journal of Sound and Vibration 285 (2005) 1242–12541244
The mixed finite element eigenvalue problem can be reduced to a matrix form by assembling the
element matrices AT ; BT and MT for all triangles to global matrices A; B and global mass matrix
M using the standard finite element procedure. The essential boundary conditions and the
symmetric conditions (depending on the domain considered) which are involved in the
construction of the global matrices A; B and M are introduced before the assembly.
The following generalized eigenvalue problem is formed:
Find ðmh; a; bÞ 2 Rþ � R2M1þM2 � RM0 such that

Aa þ Bb ¼ 0;

Bta ¼ mhMb; ð2:2Þ

where M0 ¼ dim W h is the total number of nodes in the triangulation th not lying on G; M1 is the
total number of nodes in the triangulation th; M2 ¼ M1� (total number of boundary nodes not
lying on G), dim Vh ¼ 2M1 þ M2; Ch ¼

P2M1þM2

j¼1 ajF
j
h; and uh ¼

PM0

k¼1 bkw
k
h ; where Fj

h 2 Vh;
1pjp2M1 þ M2; wk

h 2 W h; 1pkpM0 are the continuous global basis functions for the
admissible spaces of the mixed finite element formulations.
The global matrix A will have the form

A ¼

½A11	M1�M1
½A12	M1�M2

½A13	M1�M1

½A21	M2�M1
½A22	M2�M2

½A23	M2�M1

½A31	M1�M1
½A32	M1�M2

½A33	M1�M1

2
64

3
75: (2.3)

½B	tM0�ð2M1þM2Þ
is the transpose of ½B	ð2M1þM2Þ�M0

; which will have the form

B ¼

½B1	M1�M0

½B2	M2�M0

½B3	M1�M0

2
64

3
75: (2.4)

(See Refs. [1,4] for details.)
2.1. Solution approach

From the first equation in Eq. (2.2), a is eliminated and is substituted in the second equation to
obtain

Kb ¼ mhMb; (2.5)

where ½K	M0�M0
is the symmetric positive definite global stiffness matrix and ½M	M0�M0

is the
global mass matrix.
The global stiffness matrix K is computed as the Schur Complement matrix�BtA�1B and in the

case of constant coefficients aijkl ; the explicit formulation of K is given in Appendix B of Ref. [4].
The generalized eigenvalue problem (2.5) is solved using the Lanczos method [5].
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2.2. Parallelization strategy

The following methodology has been adopted for parallelization.
Triangulation:
�
 The domain O is decomposed into subdomains with the number of subdomains being equal to
the number of processors.
�
 The triangulation of the subdomains is done in parallel in the different processors. The global
triangulation of O induces triangulations in all the subdomains in such a way that whenever two
subdomains share a common interface, the boundary triangles (triangles which have edges on the
interface) in these subdomains share the same edges. This means that the interface nodes are
common between the neighbouring subdomains and there are no triangles that lie in more than one
subdomain. Each subdomain has a local numbering of the nodes along with the global numbering.

Computation of element matrices: The computation of the element matrices AT ; BT and the
element mass matrix MT is done in parallel in different subdomains, i.e. in this simple SIMD process,
each processor computes the element matrices for all those triangles that lie in the respective subdomain
allocated to it. This utilizes the distributed memory architecture effectively, because there is no need for
communication between two processors as each of the triangles lies in only one processor.

Global assembly: The element matrices are assembled to the global matrices A; B; and the global
mass matrix M in parallel as follows:
�
 Initially, a local assembly of the matrices is done in parallel within the subdomains for all the
nodes. The interior nodes do not require any data from neighbouring subdomains, but the
interface nodes do.
�
 A data exchange of the locally assembled values for the nodes on the interface is then done in
order to accumulate values assembled in two neighbouring subdomains.

Solver: Once the assembly process is over, we compute the Schur complement matrix K using a
parallel LU factorization of the matrices Aii; 1pip3 [4].
�
 The matrices Aii; 1pip3 are stored in a skyline data structure and each processor has a copy of
it. During factorization, each processor is symbolically assigned some columns in the skyline
structure in a wraparound fashion so that column j � imodNPROCS goes to processor i,
1pipNPROCS (NPROCS is the number of processors used). At each step k of the factorization,
every processor factorizes the elements in the kth row in the columns assigned to it and the
updated values are exchanged among all processors. These are then put in their respective
correct positions in the matrix in each processor.
�
 Once Aii are factorized, the Schur complement is computed by back and forward substitution
followed by matrix vector multiplication.

We find the extreme eigenvalues of the generalized eigenvalue problem Kb ¼ mhMb using the
LANSO package [5], which uses a version of the Lanczos Method for symmetric generalized
eigenvalue problems.
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3. Numerical experiments

For the plate bending operator L; the eigenvalue problem (1.1) is obtained from the equation of
motion for the small transverse displacement U of the vibrating plate under consideration

LU þ r
q2U
qt2

¼ 0 8ððx1; x2Þ; tÞ 2 O� ð0;T 	 (3.1)

with U jG ¼ 0; qU=qnjG ¼ 0 8t 2	0;T 	; r being the mass density of the elastic plate per unit area
measure of Ō; when free natural vibrations are assumed and the motion is defined by

Uðx1; x2; tÞ ¼ uðx1;x2Þ cos ot (3.2)

with o being the circular frequency expressed in radians/unit time, i.e. a substitution of Eq. (3.2)
into Eq. (3.1) will yield Eq. (1.1) with m ¼ ro2:
In the examples considered below, dimensionless coordinates are introduced and instead of

m ¼ ro2; some new parameter of convenience, which will depend on r;o; characteristic plate size
parameter, flexural rigidity of the plate, etc. will be introduced and will be still denoted by the same
notation m by giving its new definition without deduction.
�
 In the following examples on eigenvalue problems, we consider domains O with polygonal/
curved boundary G: In case the domain has a polygonal boundary G; no approximation of
boundary is involved. For a domain with a curved boundary G; approximations of G by a
polygonal boundary Gh and a curved boundary ~Gh (constructed with the help of an
isoparametric mapping) are considered.
�
 NT denotes the number of triangles in the triangulation of Ō:

�
 NPROCS denotes the number of processors used in the computations.

�
 Data and results are to be understood in proper units of measurement.

�
 Numerical results obtained have been compared with existing results, if available.

3.1. Example 3.1. Isotropic parallelogram plate vibration problem

The eigenvalue problem (1.1) with m2 ¼ oa2
ffiffiffiffiffiffiffiffiffi
r=D

p
cos2 y corresponding to the natural free

vibrations of clamped isotropic parallelogram plates with aspect ratio a=b and skew angle y (in
degrees) (see Fig. 1) is considered. The fundamental eigenvalue m1h is compared with the results
obtained in Ref. [6] in Table 1.
The runtime in minutes in different machines is given in Table 2. The time lines for this

computation as obtained using the VAMPIR parallel visualization tool [7,8] in SGI Origin 3800
are given in Fig. 2 with NPROCS ¼ 16:

3.2. Example 3.2. Orthotropic square plate vibration problem

In this example, a special kind of orthotropic coefficient [9] has been chosen. The principal
directions of orthotropy coincide with the coordinate axes of the square plate. Only three flexural
rigidity parameters are required to characterize such plates. To carry out the free vibration
analysis, only two parameters involving ratios of the three parameters are required.
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Table 1

Fundamental eigenvalue m1h corresponding to the natural free vibration of clamped isotropic parallelogram plate with

skew angle y and aspect ratio a=b; m2 ¼ oa2
ffiffiffiffiffiffiffiffiffi
r=D

p
cos2 y; NT ¼ 128 (Example 3.1)

y in degrees Aspect ratio a=b

1 0.5

m1h [6] [6]a m1h [6]

15 35.6680 35.636 35.625 24.4921 24.484

20 35.3862 35.376 — 24.4032 24.388

30 34.5938 34.624 34.788 24.1630 24.196

45 32.8491 — 32.795 23.6805 —

60 30.4596 — 30.823 23.1327 —

aResults from M. Hamada and M. Hasegawa as given in Ref. [6].

D C

BA A B

CD

a

b

Clamped

Clamped

Clamped

Clampedθ

Fig. 1. A clamped isotropic parallelogram plate (Example 3.1).

Table 2

Runtime in minutes for clamped isotropic parallelogram plate with NPROCS ¼ 4 (Example 3.1)

NT SGI Origin 3800 Intel Xeon SMP Beowulf cluster

8 0:00.243 0:00.19 0:03.78

32 0:00.571 0:00.46 0:05.04

128 0:05.237 0:05.51 1:33.78

K. Kulshreshtha, N. Nataraj / Journal of Sound and Vibration 285 (2005) 1242–1254 1247
The flexural rigidities for the orthotropic case are

Di ¼
Eit

3

12
; Dt ¼

Gt3

12
40; G ¼

E1E2

E1 þ E2
40

� �
; H ¼ 2Dt ði ¼ 1; 2Þ:

Here Ei ði ¼ 1; 2Þ are the Young’s moduli, G is the shear modulus, t ¼ tðx1;x2Þ is the thickness of
the plate.
We consider the cases where the flexural rigidities are given by

ðiÞ dhx ¼ 1:0; dhy ¼ 1:5; ðiiÞ dhx ¼ 1:5; dhy ¼ 1:5; ðiiiÞ dhx ¼ 1:5; dhy ¼ 2:0:

Here dhx ¼ H=D1; dhy ¼ H=D2:
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Fig. 2. VAMPIR timeline for the parallel processes for computing the eigenvalues of the clamped isotropic

parallelogram plate vibration problem with NPROCS ¼ 16 and NT ¼ 128 (Example 3.1). The figure shows the time spent

by the 16 processes in different activities/subroutines like assembly of matrices, factorization in skyline structure, back

and forward substitution to compute the schur complement and communication involved, etc. The dark area shows the

communication between the processes.

B

D Ca
x

D C

A

x
2

1

A B

Fig. 3. A clamped orthotropic square plate. ABCD is the reference quarter plate considered for computation

(Example 3.2).
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The eigenvalue problem (1.1) with m2 ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffi
r=D1

p
corresponding to the natural vibrations of

clamped orthotropic square plate with side 2a (see Fig. 3) is considered. The first few eigenvalues
are compared with those given in Ref. [9] in Tables 3–5. The number of processors vs. runtimes
and speedup graph when NT ¼ 128 for the problem run in SGI Origin 3800 is shown in Fig. 4.
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Table 4

Eigenvalues ðmihÞ
4
i¼1 corresponding to the natural free vibration of clamped orthotropic square plate with side 2a; m2 ¼

oa2
ffiffiffiffiffiffiffiffiffiffiffi
r=D1

p
; NT ¼ 128; dhx ¼ 1:5; dhy ¼ 1:5 (Example 3.2)

Eigenvalues Computed values [9] Nature of mode

m1h 9.4787 9.476 Doubly symmetric

m2h 19.2241 19.21 Symmetric–antisymmetric

m3h 29.3094 29.25 Doubly antisymmetric

m4h 33.9343 33.90 Second doubly symmetric

Table 3

Eigenvalues ðmihÞ
4
i¼1 corresponding to the natural free vibration of clamped orthotropic square plate with side 2a; m2 ¼

oa2
ffiffiffiffiffiffiffiffiffiffiffi
r=D1

p
; NT ¼ 128; dhx ¼ 1:0; dhy ¼ 1:5 (Example 3.2)

Eigenvalues Computed values [9] Nature of mode

m1h 8.3926 8.39 Doubly symmetric

m2h 18.0506 18.02 Symmetric–antisymmetric

m3h 25.5664 25.52 Doubly antisymmetric

m4h 28.0039 27.97 Second doubly symmetric

Table 5

Eigenvalues ðmihÞ
4
i¼1 corresponding to the natural free vibration of clamped orthotropic square plate with side 2a; m2 ¼

oa2
ffiffiffiffiffiffiffiffiffiffiffi
r=D1

p
; NT ¼ 128; dhx ¼ 1:5; dhy ¼ 2:0 (Example 3.2)

Eigenvalues Computed values [9] Nature of mode

m1h 9.0489 9.046 Doubly symmetric

m2h 18.9938 18.98 Symmetric–antisymmetric

m3h 28.2403 28.18 Doubly antisymmetric

m4h 30.4700 30.44 Second doubly symmetric

K. Kulshreshtha, N. Nataraj / Journal of Sound and Vibration 285 (2005) 1242–1254 1249
3.3. Example 3.3. Isotropic elliptic plate vibration problem

Let Gh (resp. eGh) be a symmetric polygonal (resp. a symmetric isoparametric) approximation to
G (see Fig. 5). The flexural rigidity for the isotropic case is D ¼ Et3=12ð1� n2Þ and Poisson’s
coefficient n ¼ 0:3: m2 ¼ ob2

ffiffiffiffiffiffiffiffiffi
r=D

p
corresponding to the natural vibrations of clamped isotropic

elliptic plate with semi-major axis a and semi-minor axis b has been computed.
The first three eigenvalues ðmihÞ

3
i¼1 (resp. ð ~mihÞ

3
i¼1) corresponding to affine (resp. isoparametric)

approximation to G symmetric with respect to x1 and x2 axes for b=a ¼ 1; 0:8; 0:5; 0:2 have been
tabulated in Table 6.



ARTICLE IN PRESS

Fig. 4. Number of processors vs. runtime and speedup graph for clamped square orthotropic plate with NT ¼ 128 in

SGI Origin 3800 (Example 3.2).

(0,0)

x1

2

(a,0)

(0,b)

x

Γ

x

x

x

xx

x

x

x x

xx

x

Fig. 5. A clamped isotropic elliptic plate. Isoparametric and affine triangulations are shown in quadrants I and II,

respectively (Example 3.3).
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A speedup of 5.496 has been achieved in the SGI Origin 3800 machine when NT ¼ 64 and
NPROCS ¼ 16:
A comparison of the runtimes in minutes for this problem computed in different platforms, SGI

Origin 3800, Intel Xeon SMP and beowulf cluster, for the affine and isoparametric cases when
NT ¼ 64 is given in Fig. 6.
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Table 6

First few eigenvalues corresponding to the doubly symmetric mode vibrations of a clamped elliptic isotropic plate with

semi-major axis a and semi-minor axis b with m2 ¼ ob2
ffiffiffiffiffiffiffiffiffi
r=D

p
; NT ¼ 64 (Example 3.3)

b
a

m1h em1h [6] m2h em2h m3h em3h

1 10.2909 10.2183 10.216 35.1689 35.9158 40.1193 39.8266

0.8 8.5283 8.4686 8.467 25.8102 25.6170 35.9968 35.7431

0.5 6.8926 6.8462 6.845 14.1341 14.0251 26.0785 25.8500

0.2 6.0283 5.9890 5.996 7.9414 7.8872 10.5421 10.4673

Fig. 6. Runtime comparison for affine and isoparametric elements in SGI Origin 3800, Intel Xeon and beowulf cluster

for clamped elliptic isotropic plate with NT ¼ 64 (Example 3.3).
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3.4. Example 3.4. Orthotropic circular plate vibration problem

The coefficients for the circular orthotropic case are defined through the flexural rigidities:
D22=D11 ¼ 16; H=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11D22

p
¼ 1:5; and n2 ¼ 0:3 [10]. m2 ¼ oa2

ffiffiffiffiffiffiffiffiffi
r=D

p
corresponding to the natural

vibrations of clamped orthotropic circular plate with radius a (see Fig. 7) for polygonal and
isoparametric boundary approximation have been computed and the results have been tabulated
in Table 7.
A speedup of 4.956 and an efficiency of 0.309 has been achieved in SGI Origin 3800 machine

when NT ¼ 64 and NPROCS ¼ 16:
The runtime comparison in different machines, SGI Origin 3800, Intel Xeon SMP and beowulf

cluster, for the affine and isoparametric cases when NPROCS ¼ 4 and NT ¼ 4; 16; 64 is given in Table 8.
4. Conclusions

4.1. About the machines

The performance of the algorithm in the Intel Xeon SMP machine is better than that of the
beowulf cluster, as in the cluster, the network speed is the bottle neck. Ethernet-based beowulf is
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Fig. 7. A clamped orthotropic circular plate. Isoparametric and affine triangulation are shown in quadrants I and II,

respectively (Example 3.4).

Table 7

Eigenvalues ðmihÞ
4
i¼1 corresponding to the natural free vibration of clamped orthotropic circular plate with radius

a; m2 ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r=D11

p
; NT ¼ 64 (Example 3.4)

Eigenvalues Affine Isop. Nature of mode Nodal pattern

m1h 10.1141 10.0256 Doubly symmetric

m2h 15.3093 14.6800 Symmetric–antisymmetric

m3h 21.6437 21.4525 Second doubly symmetric

m4h 29.4785 28.7209 Second symmetric antisymmetric

K. Kulshreshtha, N. Nataraj / Journal of Sound and Vibration 285 (2005) 1242–12541252



ARTICLE IN PRESS

Table 8

Runtime in minutes for clamped circular orthotropic plate of radius a in different platforms with four processors

(Example 3.4)

NT SGI Origin 3800 Intel Xeon SMP Beowulf cluster

Affine Isop. Affine Isop. Affine Isop.

4 0:00.431 0:00.446 0:00.32 0:00.33 0:02.47 0:02.56

16 0:00.496 0:00.548 0:00.34 0:00.39 0:02.59 0:03.02

64 0:01.382 0:01.551 0:01.69 0:01.72 0:10.33 0:12.74
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attractive as it provides a very cheap parallel processing platform. A MYRINET/Fibre optic
network-based beowulf cluster can be a compromise between a large processor array like SGI
Origin 3800 and an Ethernet-based beowulf cluster.
4.2. About the method

The results of the numerical experiments establish the fact that the mixed finite element method
gives satisfactory results for all the problems considered. Also, the quality of solution obtained by
the mixed finite element approximation for domains with curved boundary has been improved by
a better boundary approximation using isoparametric mapping without much change in the
computational time as compared to the polygonal approximation of the boundary.
4.3. Limitations

The memory usage in the parallel implementation of the mixed finite element eigenvalue
problem for fourth-order elliptic problems has a trade off with the communication needed. Hence,
to minimize the communication, a large amount of memory is used. Domain decomposition
algorithms for general fourth-order elliptic eigenvalue problems are yet to be explored.
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